Thermotest

Thermal test vehicle solutions by Nanotest

@ 2023 Nanotest, All rights reserved

Motivation - what is thermal test vehicle

» Thermal Test Vehicle (TTV) is a Thermal Twin of a package (e.g., CPU, GPU or NPU) to investigate thermal characteristics of these packages

Source: INTEL

- » Simulation of hot spots and power density variation and their impact on the package
- » Investigation of Thermal Interface Materials (TIM1, TIM1.5 and TIM2) under real applications
- » Development and investigation of advance cooling solution (Air cooling, liquid cooling, injection cooling etc.)
- » Reliability investigation of packages
- » Development and optimization of assembly process

Package stack up

State of Art

- Using Si or glass Interposer :
 - ++ Great CTE match between chip and interposer
 - ++ Low die warpage
 - - Low signal density
 - - High cost

Beyond State of Art

- Using organic Interposer:
 - - CTE mismatch between chip and FR4 substrate
 - - High die warpage → High stress on bumps
 - ++ High signal density
 - ++ Low cost

- Using Chiplet:
 - ++ Low warpage → low stress on bumps
 - ++ Large die possible
 - - Challenging cooling

What components are needed to build a TTV

- Thermal test chip, which should have temperature sensors distributed across its surface and heaters allowing designing of hotspots and different heater zones
- 2) Substrates (Interposer and mother board)

Wafer

Thermal Test Chip Wafers by Nanotest

Thermal Test Chip (TTC)

Resistive Bump Monitoring

- » 2.4 × 2.4 mm² unit cells
- » 8" wafer / > 4000 cells
- » 500 µm undoped silicon
- Flip-chip assembly
- > 50 × 50 mm² max. die size*
- » Backside metallized
 - > Option 1: NiV 300 nm | Pt 100 nm | Au 200 nm
 - > Option 2: Ti 100 nm | NiV 300 nm | Au 200 nm
 - Option 3: pure silicon
- » Power density: up to 10 W/mm²
- » RTD Sensitivity 10 Ω/K

grid connection

- » Example
- » 9.9 x 9.9mm² heating grid
- » 7Ω resistance
- $> 10W/mm^2 = > P=980W$ (11.8A/82.6V)
- » Sensor location customizable

*very risky and advanced technology

Custom TTV Design and Manufacturing

Substrate, heat spreader, test board

Thermal Test Vehicles (TTV)

Design the TTV you need. No Compromise

We support our customers to verify their prospective package, TIMs and cooling solutions by offering TTV solution

We offer:

- » Thermal test chips wafer
- » Concept and feasibility
- » Interposer and test board
- » Assembly and quality assessment
- » Measurement hardware
- » Measurement and control software
- » Calibration and test

Thermal test

Chip

configuration

Substrate

design

Substrate

manufacturing

Chip and Board

assembly

Quality control

and test

Measurement

hardware

Measurement

We provide

Mapping Examples

Single Chip

- 100 cells
- 625 mm²
- 7 power zones
- 16 RTD sensing
- 4 bump monitoring

- 64 cells
- 400 mm²
- 9 power zones
- 15 RTD sensing
- 3 bump monitoring

Chiplet

- 37 cells
- 1x 156,25 mm²
- 2x 37,5 mm²
- 3 power zones
- 9 RTD sensing
- 5 bump monitoring

В

- 52 cells
- 1x 250 mm²
- 3x 25 mm²
- 6 power zones
- 14 RTD sensing
- 4 bump monitoring

Interposer and substrate design

Customer specifications

Technology limits

- Numbers of sensors and heater zone
- Substrate size
- Substrate thickness
- Number of layers and stack-up
- Interfaces
- Number of layers
- Vias technologies (through hole, blind vias, buried vias, micro vias)
- Line / space ratio
- Substrate material, copper thickness, substrate thickness

Design guidelines

- Voltage, current limitation
- Routing density
- EMC
- Copper distribution
- Stack-up Symmetry

Optimized substrate

Substrate / Interposer

Requirements

- » Material (FR4, High TG, Low CTE)
- » Dimensions (up to 100x100 mm²)
- » Stack Up
 - > Thickness (1.0 mm 2.5 mm)
 - > Number of layers (up to 16, 18, 20)
- » Technology processes
 - > Smallest structures (>100µm)
 - > Copper thickness (18µm 35µm)
 - > Blind via, stacked via, buried via, via in pad
 - > Filled and plugged (VII Filled and Capped-IPC 4761)
- » Copper distribution

TTV System

TTV Package with connectors*

TTV Package with stiffener ring and BGA assembled on ETB*

TTV Package with LID + TIM material and BGA assembled on ETB*

- » TTV Software for User Interface
 - > power dissipation control
 - > temperature visualization
- » Hardware Development/Implementation
 - > MUX for sensor multiplexing
 - > Power Supply

ETB

DAQ system

Heat spreader, Stiffener Ring and LID design

» Design according to customer specification

» Material: metal, alloy, coating, surface finish

» Geometry: size, TIM thickness

» Features: temperature sensors, cavities

Electronic test board concept and design

- » Electronic test board concept according to customer specification
 - > TTV connection technology
 - > BGA, LGA, PGA, SMT
 - > Temperature measurement concept
 - > I/O routing, probe current supply, MUX, interfaces
 - > Heater supply routing
 - Mechanical design
 - > Heat sink attachment, substrate fixation

Assembly

TTV, heat spreader, test board

Process Flow I – Packaging and assembly capability

Wafer microscope Olympus MX 63

Incoming inspection

Initial state

Screen printer **DEK Galaxy**

Solder application by stencil printing

Wafer microscope Olympus MX 63

Optical inspection

Datacon 2200 evo advanced

Chip Assembling

GE nanome|x 180

X-ray Inspection control of placement quality

Rehm Vision XS nitro 2100

Reflow

GE nanome|x 180

X-ray Inspection control of placement quality

After printing application

After chip placement

After soldering

Process Flow II – Packaging and assembly capability

Infotech System FC1200

SONOSCAN GEN 6

Wide Area 3D Measurement System VR 5200

SPEA flying probe Tester 4040

Underfill

CSAM inspection

Optical inspection Warpage

Final electrical Test

After underfill

Calibration and test

Temperature calibration

- » Memmert universal oven UFE 500 (with forced air circulation)
- » Resistance vs. temperature characteristics acquisition
 - > 100 1000 µA probe current
 - > 4-wire termination
 - > I/V measurement for resistance determination
- » Optional: TTV-specific multiplexers for process acceleration

Testing

- » Aging and stress tests
 - > Temperature cycling
 - > Thermal shocks
 - > Power cycling
 - > Climate chamber

- » Measurement and analysis
 - > On-chip temperature measurement
 - > Thermographic hot spot detection
 - > Thermal imaging-based failure analysis
 - > Steady-state temperature profiling
 - > Transient thermal analysis

Available TTVs and tools

TTV10-NT20

General purpose compact TTV

- » Based on the NT20-3k-FC
- » Chip dimension: 10 × 10 matrix | 24.9 × 24.9 × 0.5 mm³
- » Substrate dimension: 60 × 60 × 1.56 mm³
- » Package dimension: 60 × 60 × 2.24 mm³
- » Assembly technology: Flip chip and underfill
- » Chip BSM: NiV 300 nm | Pt 100 nm | Au 100 nm
- » 16 Temperature sensors (3.3 k Ω with 10.0 Ω /K sensitivity)
- » 4 Independent heater zones (7 Ω each, 3.2 W/mm²)
- » Total package power: 2000 W

» General purpose compact TTV

- » Based on the NT16-3k-FC
- » 3 × 3 matrix
- » FR4 substrate, flip-chipped, underfilled
- » Blank silicon surface
- \sim 25 \times 20 \times 2.38 mm³ package
- » Uniform resistor heater (15.5 Ω / 140 W max.)
- » 5 RTDs (3.3 k Ω / 9 Ω /K)

Adhesive testing with TTV5

TIM1 characterization in TIMA® 5

Holder, electronics and Software for TTV5 (TTV5 SAC)

- » TTV Stand-Alone Controller v3
- » Hardware-software combination
- » Designed for NT16-TTV5
- » Features:
 - Heater control (automatic / manual)
 - Temperature monitoring
 - Logging
- » Built for NT16-TTV5
 - > Foundation for customization
 - Adaptable to any small-scale TTV

nanotest.eu

Berliner Nanotest und Design GmbH

Volmerstr. 9 B, 12489 Berlin, Germany

info@nanotest.eu

+49 30 6392 3880