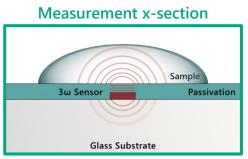

TOCS[®]

Motivation

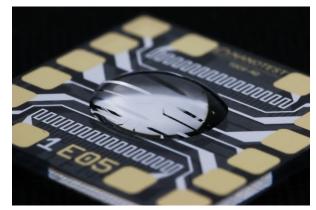
- » Thermal conductivity of thermal interface materials can be critical for thermal management in microelectronic systems
- » Thermal conductivity usually measured by steady-state method ASTM D5470 (e.g., TIMA®), but
 - > Measurement during curing is not easily possible (because relatively high ΔT must be applied for measurement)
 - Not well suitable for high thermal conductivity materials and time-consuming preparation for cured samples, because samples of different thicknesses must be prepared
- » Bidirectional 3-omega method is an alternative to the standard method for measuring thermal conductivity
 - Sensitive
 - > Rapid (≈ 1 minute)
 - > Temperature and time-dependent measurements during curing
 - > Suitable for low and high thermal conductivities


Fast-paced thermal material characterization

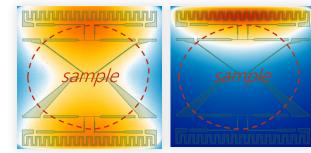
Material parameters

- > Bulk thermal conductivity
- > Thermal diffusivity

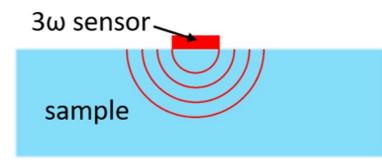
Feasible samples

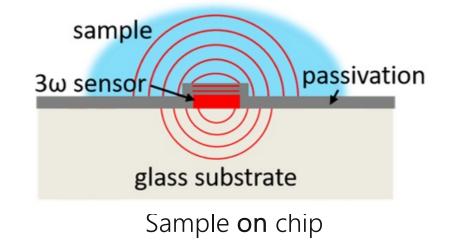

- > Liquids
- > Gels
- Pastes
- Soft solids

© 2023 Nanotest. All rights reserved.


Sample material is simply applied on the test chip and tested with a mere buttonpress.

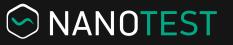
Custom temperature profiles



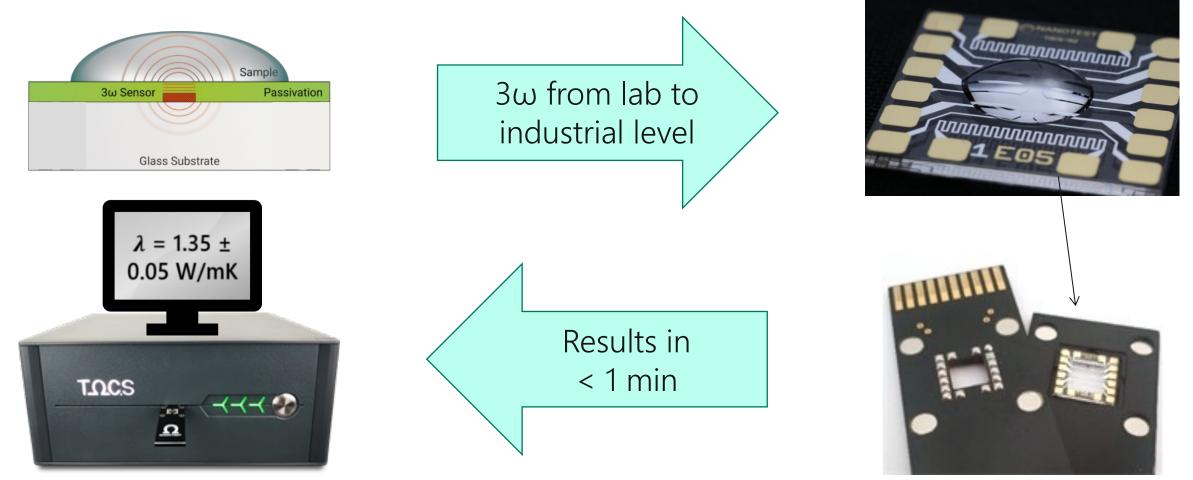

New approach using three-omega method

Conventional 3ω-method

Bidirectional 3ω-method



Sensor on top of sample



» Requires 3ω sensor for each sample» Only for solid materials

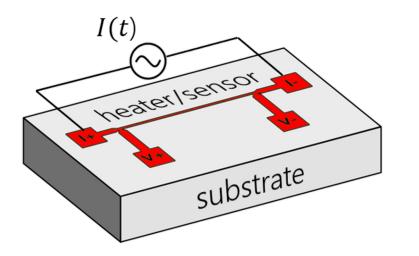
» Taking 3ω-method from lab to industrial application

» highly-sensitive measurement platform for thermal conductivity and diffusivity measurements based on the 3ω method

 $\ensuremath{\mathbb{C}}$ 2023 Nanotest. All rights reserved.

TOCS | Three-Omega Characterization System

NANOTEST


Method

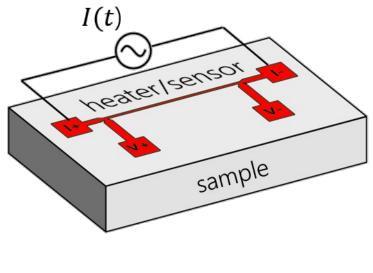
TOCS[®] physical basics

© 2023 Nanotest. All rights reserved.

Three-Omega Method used by TOCS[®]

 1ω Current $I(t) = I_0 \cos(\omega t)$ Heating $P(t) = I^2(t)R$ 0ω,2ω ^{0ω, 2ω} Temperature $\Delta T \propto P$ Resistance $R(t) = R_0(1 + TCR \cdot \Delta T(t))$ 0ω, 2ω Voltage V(t) = I(t)R(t) $1\omega, 3\omega$ $V_{1\omega}$ $V_{3\omega}$ [1] Lock-in measurement

[1] Dames C. et al., Rev. Sci. Instrum. 76, 124902 (2005).



heater/sensor substrate

$$\Delta T = \frac{2V_{3\omega}}{I_0 \mathrm{d}R/\mathrm{d}T}$$

© 2023 Nanotest. All rights reserved.

Three omega method: substrate calibration

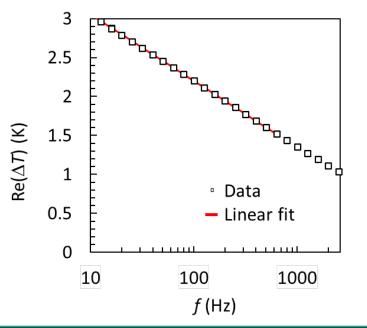
Model by Cahill, 1990 [1]:

$$\Delta T = \frac{2V_{3\omega}}{I_0 \mathrm{d}R/\mathrm{d}T}$$

If substrate thickness $d_s > 5\mu$ and $\mu < L/5$ [2], where $\mu = \sqrt{\alpha/2\omega}$ (= penetration depth):

$$\Delta T = \frac{P}{\lambda \pi L} \int_0^\infty \left(\xi^2 + \frac{i2\omega}{\alpha}\right)^{-1/2} \frac{\sin^2(\xi b)}{(\xi b)^2} d\xi$$

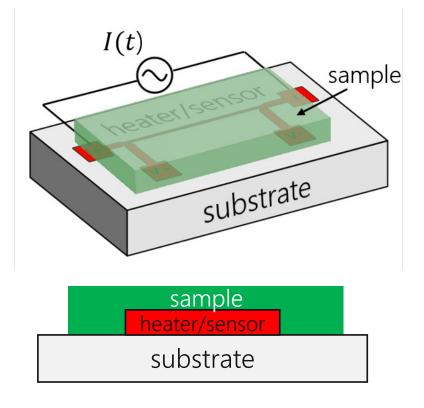
 λ : sample thermal conductivity α : sample thermal diffusivity *P*: power


L: sensor length, *b*: sensor half width.

Boundary mismatch approximation ($L \gg b$, $\mu > b$) [1,2] :

 $\lambda \cong \frac{-P}{2\pi L} \left(\frac{\mathrm{d}(\mathrm{Re}(\Delta T))}{\mathrm{d}(\mathrm{ln}(\omega))} \right)^{-1}$

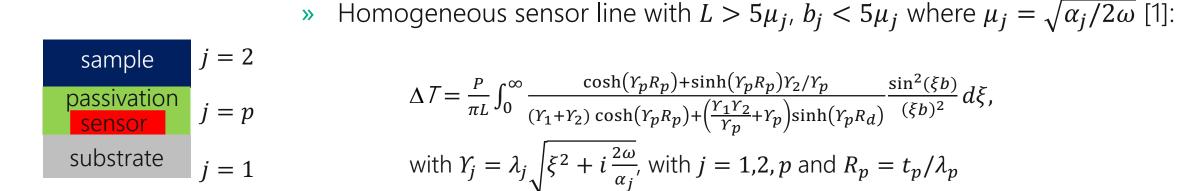
"slope method"


[1] Cahill D. G., *Rev. Sci. Instrum.* **61**, 802-808 (1990). [2] Dames, C.*, Ann. Rev. Heat Transfer.* **16**, 7-49 (2013).

8

Three Omega Method: measurement of sample on top of chip

If thickness of substrate (j = 1) and sample $(j = 2) d_j > \mu_j$ and sensor length $L > 5\mu_j$, with $\mu_j = \sqrt{\alpha_j/2\omega}$ [1]: $\Delta T = \frac{P}{\pi L} \int_0^\infty \frac{1}{Y_1 + Y_2} \frac{\sin^2(\xi b)}{(\xi b)^2} d\xi$ $Y_j = \lambda_j \sqrt{\xi^2 + i \frac{2\omega}{\alpha_j}}$ λ_i : thermal conductivity of material j


 a_j : thermal conductivity of material j a_j : thermal diffusivity of material jb: sensor half width, L: sensor length R_0 : sensor resistance.

Boundary mismatch approximation ($L \gg b$, $\mu_{1,2} > b$) [1] :

Thermal conductivity of sample: $\lambda_2 = "\lambda_{1+2}" - \lambda_1$ "slope method"

[1] Lubner, S. D. *et al., Rev. Sci. Instrum.* **86**, 014905 (2015).

Bidirectional 3ω-method with passivation

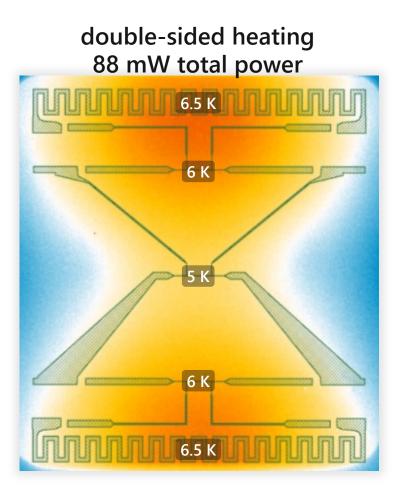
P: power 2b: sensor width, L: sensor length, R_0 : sensor resistance α_j : thermal diffusivity of material j λ_j : thermal conductivity of material j t_p : thickness of passivation

Boundary mismatch approximation ($L \gg b$, $\mu_j > b$, $t_p << \mu_j$) [1] :

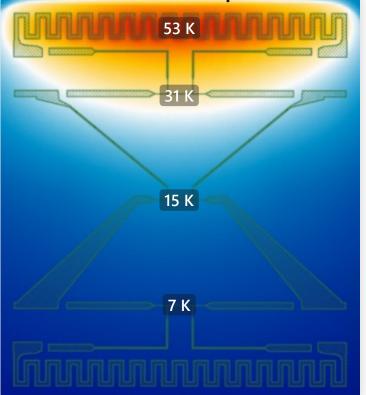
Thermal conductivity of sample $\lambda_2 = "\lambda_{1+2}" - \lambda_1$ "slope method"

[1] Lubner, S. D. et al., Rev. Sci. Instrum. 86, 014905 (2015).

10


Analysis models of TOCS[®]

#	Fit model	Results	Remarks	Use case	(1)	Sensor
[0]	Linear fit	Thermal conductivity of substrate and sample	Passivation is neglected "slope"-method	all		Substrate
[1]	Cahill model (only substrate)	Thermal conductivity & diffusivity of substrate	Air or vacuum as sample	1	(2)	Sample Sensor
[2]	Bidirectional w/o passivation	Thermal conductivity & diffusivity of samples	To be used for chip w/o passivation	2		Substrate
[3]	Fit passivation parameters	Thermal conductivity & diffusivity of chip passivation	Results to be used as input for fit model 4	3		Passivation
[4]	Bidirectional w/ passivation fit conductivity + diffusivity	Thermal conductivity & diffusivity of samples		4	3	Sensor Substrate
[5]	Bidirectional w/ passivation fit diffusivity	Thermal diffusivity of samples	Conductivity should be known or measured with other model	4	(4)	Sample Passivation
[6]	Bidirectional model w/ passivation short	Thermal conductivity & diffusivity of samples	Passivation assumed as Rth (offset)	4	\bigcirc	Sensor Substrate



© 2023 Nanotest. All rights reserved.

On-Chip heating options

single-sided heating 190 mW total power

temperature rise relative to ambient temperature

- \rightarrow Heating of chip, for temperature-dependent thermal conductivity measurement
- → Chip temperature up to 180°C

TOCS | Three-Omega Characterization Syste

Measurement examples

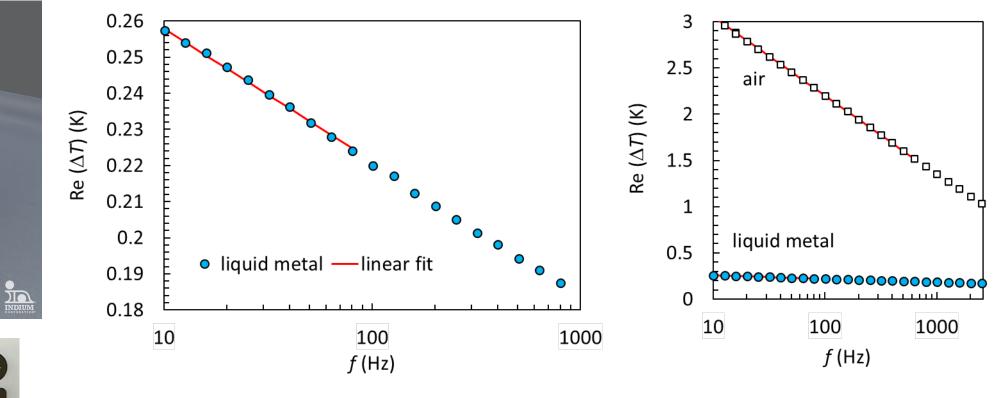
TOCS[®] in action

 $\ensuremath{\mathbb{C}}$ 2023 Nanotest. All rights reserved.

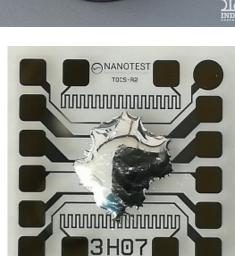
Thermal interface materials

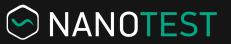
- » Different pastes have been characterized
- » Three non-cured thermal greases
- » One cured two components gap filler
- » Pastes dispensed on the top of the chips
- » Gap filler has been cured at 150°C for 1h directly on the chip
- » Data fitted with model [0]

Dow Corning[®] 340

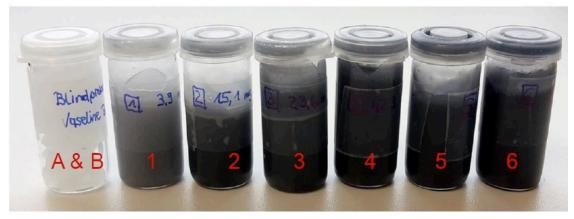


	0.8	
	0.0	air o air
Re(ΔT) (K)	0.7 0.6	- W.P12 & WackerP12
		■
		_ [°] ♦ [°] ▲ TC-4525
		DC340
		□ □ □ · · · · · · · · · · · · · · · · ·
	0.5	- - TC-4525
Ŕ	0.4	A TC-4525 DC340 A TC-4525 A SPG-30A Iinear fit SPG-30A A A A A A A A A A A A A A A A A A A A
	0.4	
	0.2	
	0.3	
	0.2	
		30 _f (Hz) 300 3000
		J (112)

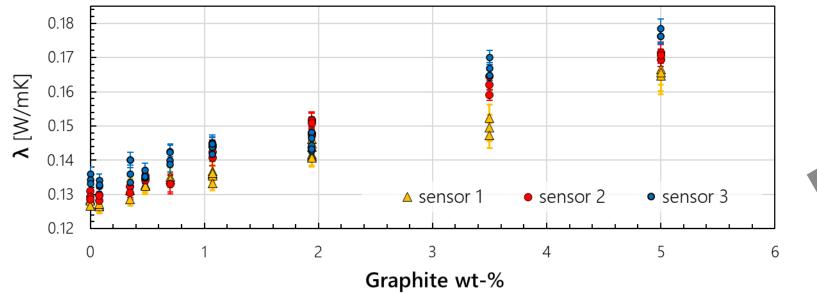

Material	λ τοcs W/(m·K)	λ Datasheet W/(m·K)	
P12	0.58 ± 0.02	0.81	
340	0.79 ± 0.04	0.67	
TC-4525	2.40 ± 0.20	2.6	
SPG-30A	3.81 ± 0.05	3.2	

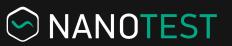


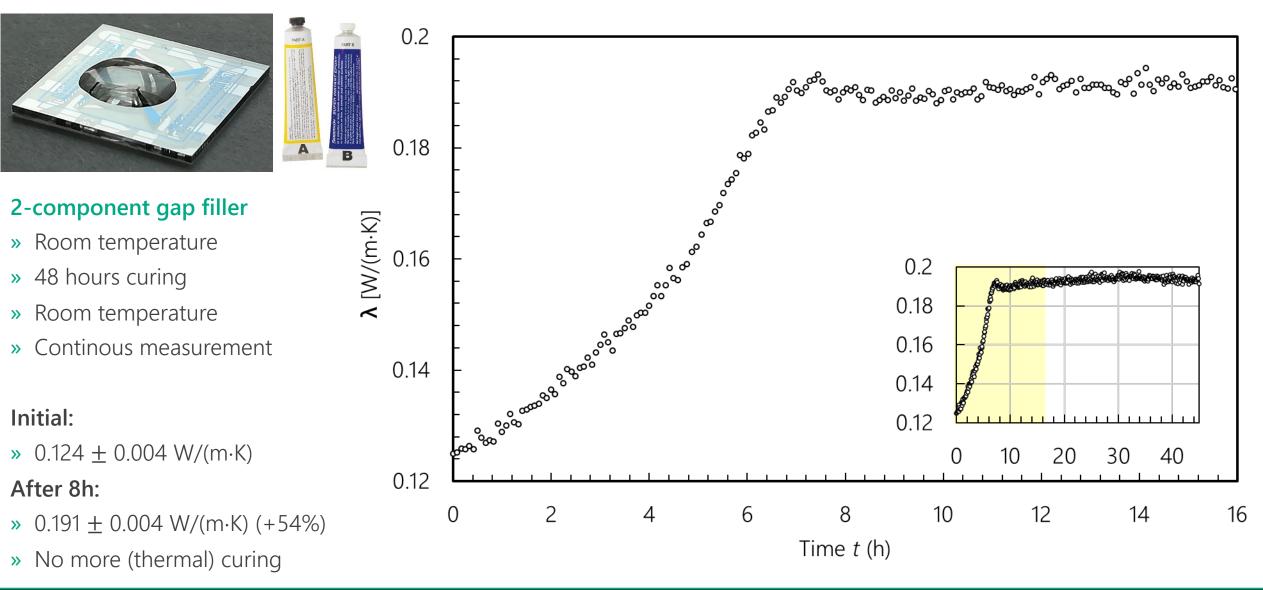
Liquid metal

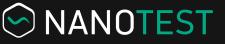

Indalloy® 46L 61% Ga | 25% In | 13% Sn | 1% Zn λ = 29 ± 1 W/(m·K)

TOCS | Three-Omega Characterization System


Graphite dispersed in Vaseline


Graphite (99% pure, 15-20 µm particle size) in Vaseline





Thermal conductivity of epoxy during curing

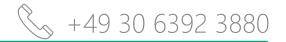
- » Fast and easy
- » Highly sensitive
- » Conductivity + diffusivity
- » Monitoring over temperature
- » Monitoring over time
- » External curing

» Pressure-less only
» Only liquids + pastes
» Sample thickness > 100 µm (depending on sample type)

Limits

» Not standardized

nanotest.eu/tocs


nanotest.eu

Berliner Nanotest und Design GmbHVolmerstr. 9 B, 12489 Berlin, Germanyinfo@nanotest.eu+49 30 6392 3880

🖂 info@nanotest.eu

Berliner Nanotest und Design GmbH Volmerstrasse 9 B D-12489 Berlin Germany

© 2023 Nanotest. All rights reserved.