NANOTEST

TIMA 5-23

Description

TIMA is a fully ASTM D 5470 compliant measurement system for thermal characterization of thermal interface material and other material with low to midranged thermal conductivity.

Technical Specification

System

System type	Benchtop material characterization system				
Footprint (w × d)	42.3 × 48.3	cm ²			
Height	75.2	cm			
Weight	50	kg			
	100 230	VAC			
Power supply	50 60	Hz			
	600	W			

Measurement type	Thermal steady-state characterization				
Applied standards	ASTM D 5470-17				
	Thermal resistance	mm ² K/W			
Output	Thermal conductivity	W/(m·K)			
	Thermal interface resistance	mm ² K/W			
Resolution	1.0	mm²K/W			

Sample properties

		min	max		
Sample size (round, o	diameter)	13	25.4	mm	
Sample size (square,	edge length)	10	25.4	mm	
Sample thickness		0.001	10.0	mm	
Measurement cond	tions				
Force (continuous)		-300 .	300	N	
Force (short-term)		-450 .	450	IN	
		🗆 10 mm	4.5	MPa	
Duanauna (abaut tauna	N		652	Psi	
Pressure (short-term	1)	(1) 2E / mm	0.9	MPa	
		0 25.4 11111	130	Psi	
Sample Temperature	!	20 150		°C	
Measurement accur	асу				
Sensor temperatures	;	± 0.2		К	
Sample temperature		± 0.05		К	
Sample thickness	load-free	± 1*		μm	
	force load of x N	± 2 * 0.02>	K	μm	
Mechanical load		± 1		Ν	

Software screenshots

Thermal resistance

%

< ± 5

Key features

- Full ASTM D 5470 compliance »
- » Compact and all-in-one
- Automated & scheduled testing »
- Swiftly exchangeable test heads »
- » High precision thickness monitoring
- Ease of use, optimized for user experience »

Key output material and compound properties

- Thermal resistance »
- Bulk thermal conductivity »
- Thermal interface resistance »

Key testing schemes

- » Temperature dependency
- Pressure dependency »
- Thermal performance »
- Interface quality »
- Thermo-mechanical stability »
- Aging behavior / life expectation »

Scope of samples

- » Thermal interface material
- Pastes and greases »
- Gap pads and gap filler »
- Foils and sheets »
- Adhesive and cured material »
- Mold compound »
- Underfiller »
- Substrates and interposer »

The principle of ASTM D5470

Samples are measured between two metal test heads that are known in geometry and physical properties. Measuring both temperature gradient ΔT over and heat flow Q through the sample returns its effective thermal resistance Rth_{eff}.

Repeating such measurement for multiple sample thicknesses allows to calculate the following linear fit to receive the sample's bulk thermal conductivity.

Linar fit of Rth over BLT

 $Rth_{eff} = Rth_{bulk} + Rth_0$ $Rth_{eff} = \frac{\Delta T}{\dot{Q}}$ $Rth_{eff} = \frac{1}{\lambda_{bulk} \cdot A} \cdot BLT + Rth_0$

The linear fit of thermal resistance over the thickness bears information about bulk thermal conductivity and interface resistance.

Determination of bulk thermal conductivity

- » Eff. thermal resistance over bond line thickness
 - \rightarrow Bulk thermal conductivity and contact resistance
- » Thickess range 25 to 200 μm
- » 60°C sample temperature

Thermal characterization of soft material

NANOTEST

Measurement deviation

	Q [W]	5	10	15	20	25	30	40	50	
$Rtn = \Delta I / Q$		Qb	5.0%	3.9 %	3.6%	3.5%	3.4%	3.3%	3.3%	3.3%
ΔT [K]	d∆T	dRth								
1	10.5%		15.5%	14.4%	14.1%	14.0%	13.9%	13.8%	13.8%	13.8%
2	5.5%		10.5%	9.4%	9.1%	9.0%	8.9%	8.8%	8.8%	8.8%
5	2.5%		7.5%	6.4%	6.1%	6.0%	5.9%	5.8%	5.8%	5.8%
10	1.5%		6.5%	5.4%	5.1%	5.0%	4.9%	4.8%	4.8%	4.8%
15	1.2%		6.2%	5.1%	4.8%	4.7%	4.6%	4.5%	4.5%	4.5%
20	1.0%		6.0%	4.9%	4.6%	4.5%	4.4%	4.3%	4.3%	4.3%
25	0.9%		5.9%	4.8%	4.5%	4.4%	4.3%	4.2%	4.2%	4.2%
30	0.8%		5.8%	4.7%	4.4%	4.3%	4.2%	4.1%	4.1%	4.1%
40	0.8%		5.8%	4.7%	4.4%	4.3%	4.2%	4.1%	4.1%	4.1%
50	0.7%		5.7%	4.6%	4.3%	4.2%	4.1%	4.0%	4.0%	4.0%
60	0.7%		5.7%	4.6%	4.3%	4.2%	4.1%	4.0%	4.0%	4.0%
70	0.7%		5.7%	4.6%	4.3%	4.2%	4.1%	4.0%	4.0%	4.0%
90	0.6%		5.6%	4.5%	4.2%	4.1%	4.0%	3.9%	3.9%	3.9%
100	0.6%		5.6%	4.5%	4.2%	4.1%	4.0%	3.9%	3.9%	3.9%

S NANOTEST