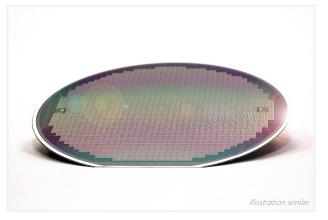
NANOTEST


NT20-3k-FC

Description

The NT20-3k Thermotest Chip is designed as a modular system to provide the maximum of flexibility for thermal characterization and qualification of materials, packages, and systems.

Each chip cell of $2.5 \times 2.5 \text{ mm}^2$ size provides two uniform heaters and a centered thermistor, both connected to a large solder ball matrix for flip chip assembly via a robust redistribution layer (RDL). The solder ball matrix additionally provides solder balls explicitly dedicated to health monitoring and thermo-mechanical and reliability investigation.

The chip can be configured in any desired matrix. Temperature sensors, heaters and monitoring solder balls are each addressable individually for maximum flexibility in sensing resolution and heat distribution.

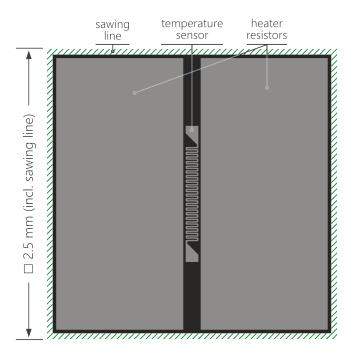
Technical Specification

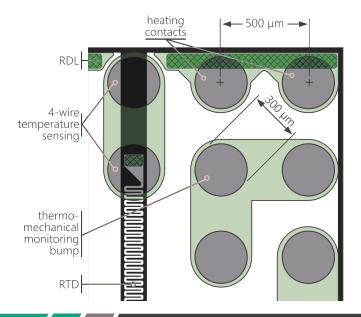
Technology and Methodology

		,,	
Fabrication tech	nnology	Thin	Film
Assembly techn	ology	Flip o	chip
Sensor		Resistance th	ermometer
Wafer			
Wafer material		Silicon, u	ndoped
Wafer size		200	mm
Wafer thickness		500	μm
Cell size		2.4 × 2.4	mm²
Scribe line between cells		100	μm
Topside passivat	tion	7 µm Pi (polym	er passivation)
	option A	NiV 300 nm Pt 10	0 nm Au 100 nm
Backside metal	option B	Ti 100 nm NiV 300) nm Au 200 nm
	option C	nc	n
Unit Cell count		440	00
Heater			
Heater type		Resis	stor
Resistors per ch	ip	2	

Resistors per chip	2	
Resistance per resistor	14 ± 1	Ω
Max current per heater	1.5	А
Max power per cell	63	W
Max power density	10	W/mm ²
Active heater area	82% of c	ell area

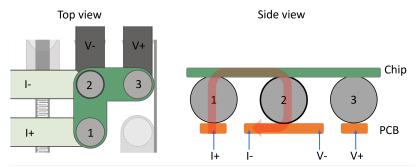
Sensor


Sensor type	meander-struct	tured resistor
Sensor position	cell ce	nter
Sensor connection	4-wire terr	mination
Resistance value (25°C)	3.2 ± 0.1	kΩ
Sensitivity	10.0 *	Ω/Κ
Dimensions (I × w)	820 × 100	μm²


Assembly

Assembly technology	Flip	chip
Solder type	SAG	2305
Under bump metallization	NiAu	(4 µm)
Solder bump diameter	300	μm
Pad raster	500	μm

theoretical value based on the Ti temperature coefficient



Thermo-mechanical monitoring

The center bump in each thermo-mechanical monitoring structure as depicted on the right (marked with a bold stroke), can be electrically monitored using 4-wire termination in a configuration as shown. The state of health correlates with the measured electrical resistance.

Pin configuration

For absolute coordinates of each pin the point of origin (X=0, Y=0) is the cell center. Nomenclature is involving a prefixed letter which indicates the purpose of the specific pin. H0 and H1 pins connect to heating structures, SI to the sensor current input and SV sensor voltage sensing. TM0, TM1, TM2 and TM3 are connected to the thermo-mechanical monitoring structures.

	Connection	Χ [μm]	Υ [µm]
A1	H0_0		1000
A2	TMØ		500
A3	TMØ	-1000	0
A4	TM1		-500
A5	H0_1		-1000
B1	H0_0		1000
B2	TMØ		500
B3	TM1	-500	0
B4	TM1		-500
B5	H0_1		-1000
C1	SI_0		1000
C2	SV_0	0	500
C4	SV_1	0	-500
C5	SI_1		-1000
D1	H1_0		1000
D2	TM2		500
D3	TM2	500	0
D4	TM3		-500
D5	H1_1		-1000
E1	H1_0		1000
E2	TM2		500
E3	TM3	1000	0
E4	TM3		-500
E5	H1_1		-1000

Chip selection guide

The length of the chip edge can be calculated depending on the number of cells per row and column using the following equation.

```
Edge length = n × cell length - scribe line length

Edge length = n × 2.5 mm

Example: (4 x 4 matrix of cells)

Edge length = 4 x 2.5 mm

Edge length = 4 x 2.5 mm

Chip size = 9.9 x 9.9 mm<sup>2</sup>
```

Application remarks

The offered products are supposed to be used for characterization purposes. The application of the data from the test die to a functional system lies in the responsibility of the user. Nanotest makes no warranty, express or implied including the implied warranties of merchantability and fitness for a particular purpose, that the user's system designed using that data will perform as intended.

NANOTEST

Page 2 / 2 © 2023 Nanotest. All rights reserved NT20-3k-FC datasheet document rev.73