

Description

The NT16-3K Thermotest Chip is designed as a modular system to provide the maximum of flexibility for thermal characterization and qualification of materials, packages and systems.

The smallest full functional chip cell of 3.2 mm x 3.2 mm consists of 10 uniform heating resistors, and a thermistor in the center. Heaters as well as temperature sensor are fabricated in one layer.

The chip can be configured in any desired matrix up to 5×5 cells. Each temperature sensor is addressable individually, allowing localized temperature measurements. The heating resistors on each chip cell can be powered individually in a serial or parallel configuration to achieve costumers and applications specific electrical resistance values and heat dissipations.

Technical Specification

Technology and Methodology

Fabrication technology	Thin Film	
Assembly technology	Flip chip	
Sensor	Resistance thermometer	

Wafer

Wafer material	Silicon, undoped		
Wafer size	150	mm	
	6	inch	
Wafer thickness	675	μm	
Cell size	3.2 x 3.2	mm²	
Scribe line between cells	100	μm	
Matrix	up to 20 x 20 cells (66 x 66 mm ²)		
Topside passivation	2.4 µm glass (SiO ₂)		
Backside metallization	none		

Heater

Heater type	resistor		
Resistors per chip	10		
Resistance per resistor	160	Ω	
Max current per heater line	400	mA	
Max power per cell	250 *	W	
Active heater area	> 62% of cell area		
Maximum temperature	350 **	°C	

Sensor

Sensor type	meander-structured resistor		
Sensor position	cell center		
Sensing method	four-terminal sensing		
Resistance value	3	kΩ	
Sensitivity	8	Ω/Κ	
	8 mV/K @ 1mA		
Lateral size	870	μm	

Assembly

•			
Assembly technology	Flip chip		
Solder bump metallization	Cu-Pillar (40 μm) with SnAg (30 μm)		
Solder bump diameter	80	μm	
Pad raster	300	μm	

^{** 350°}C operating temperature only applies to the chip itself. A much lower maximum operating temperature is likely due to other assembly components (i.e. PCB and solder) and has to be regarded.

Chip selection guide

You can calculate the length of the chip edge depending on the number of cells per row / column using the following formula.

edge length = $n \times cellLength + (n-1) \cdot cribeLineLength$ edge length = $n \times 3.2 \cdot mm + (n-1) \times 0.1 \cdot mm$

Example: (3 x 3 matrix of cells)

edge length = $3 \times 3.2 \text{ mm} + (n-1) \cdot 0.1 \text{ mm}$

chip size = $9.8 \times 9.8 \text{ mm}^2$

Pin configuration

For absolute coordinates of each pin the point of origin (X=0, Y=0) is the cell center. Nomenclature of pins is involving a prefixed letter which indicates the purpose if the specific pin. Hx pins for connection to heating structures, pins SI for sensing current input and SV pins for voltage sensing.

#	Name	X [μm]	Y [μm]
01	H1	-1500	1500
02	H2	-1200	1500
03	Н3	-900	1500
04	H4	-600	1500
05	H5	-300	1500
06	S1	0	1500
07	S1	0	1200
08	Н6	300	1500
09	H7	600	1500
10	Н8	900	1500
11	Н9	1200	1500
12	H10	1500	1500
13	H1	-1500	-1500
14	H2	-1200	-1500
15	Н3	-900	-1500
16	H4	-600	-1500
17	H5	-300	-1500
18	S2	0	-1500
19	S2	0	-1200
20	Н6	300	-1500
21	H7	600	-1500
22	Н8	900	-1500
23	Н9	1200	-1500
24	H10	1500	-1500

Application remarks

All offered dies are supposed to be used for characterization purposes. The application of the data from the test die to a functional system lies in the responsibility of the user. Nanotest makes no warranty, express or implied including the implied warranties of merchantability and fitness for a particular purpose, that the user's system designed using that data will perform as intended.

